19 research outputs found

    Energy efficient task scheduling in data center

    Get PDF
    First of all, I am thankful to God for his blessings and showing me the right direction. With His mercy, it has been made possible for me to reach so far. Foremost, I would like to express my sincere gratitude to my advisor Prof. Durga Prasad Mohapatra for the continuous support of my M.Tech study and research, for his patience, motivation, enthusiasm, and immense knowledge. I am thankful for her continual support, encouragement, and invaluable suggestion. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my M.Tech study. Besides my advisor, I extend my thanks to our HOD, Prof. S. K. Rath and Prof. B. D. Sahoo for their valuable advices and encouragement. I express my gratitude to all the sta members of Computer Science and Engineering Department for providing me all the facilities required for the completion of my thesis work. I would like to say thanks to all my friends especially Dilip Kumar, Alok Pandey for their support. Last but not the least I am highly grateful to all my family members for their inspiration and ever encouraging moral support, which enables me to purse my studies

    Neurodevelopmental disorders in children aged 2-9 years: Population-based burden estimates across five regions in India.

    Get PDF
    BACKGROUND: Neurodevelopmental disorders (NDDs) compromise the development and attainment of full social and economic potential at individual, family, community, and country levels. Paucity of data on NDDs slows down policy and programmatic action in most developing countries despite perceived high burden. METHODS AND FINDINGS: We assessed 3,964 children (with almost equal number of boys and girls distributed in 2-<6 and 6-9 year age categories) identified from five geographically diverse populations in India using cluster sampling technique (probability proportionate to population size). These were from the North-Central, i.e., Palwal (N = 998; all rural, 16.4% non-Hindu, 25.3% from scheduled caste/tribe [SC-ST] [these are considered underserved communities who are eligible for affirmative action]); North, i.e., Kangra (N = 997; 91.6% rural, 3.7% non-Hindu, 25.3% SC-ST); East, i.e., Dhenkanal (N = 981; 89.8% rural, 1.2% non-Hindu, 38.0% SC-ST); South, i.e., Hyderabad (N = 495; all urban, 25.7% non-Hindu, 27.3% SC-ST) and West, i.e., North Goa (N = 493; 68.0% rural, 11.4% non-Hindu, 18.5% SC-ST). All children were assessed for vision impairment (VI), epilepsy (Epi), neuromotor impairments including cerebral palsy (NMI-CP), hearing impairment (HI), speech and language disorders, autism spectrum disorders (ASDs), and intellectual disability (ID). Furthermore, 6-9-year-old children were also assessed for attention deficit hyperactivity disorder (ADHD) and learning disorders (LDs). We standardized sample characteristics as per Census of India 2011 to arrive at district level and all-sites-pooled estimates. Site-specific prevalence of any of seven NDDs in 2-<6 year olds ranged from 2.9% (95% CI 1.6-5.5) to 18.7% (95% CI 14.7-23.6), and for any of nine NDDs in the 6-9-year-old children, from 6.5% (95% CI 4.6-9.1) to 18.5% (95% CI 15.3-22.3). Two or more NDDs were present in 0.4% (95% CI 0.1-1.7) to 4.3% (95% CI 2.2-8.2) in the younger age category and 0.7% (95% CI 0.2-2.0) to 5.3% (95% CI 3.3-8.2) in the older age category. All-site-pooled estimates for NDDs were 9.2% (95% CI 7.5-11.2) and 13.6% (95% CI 11.3-16.2) in children of 2-<6 and 6-9 year age categories, respectively, without significant difference according to gender, rural/urban residence, or religion; almost one-fifth of these children had more than one NDD. The pooled estimates for prevalence increased by up to three percentage points when these were adjusted for national rates of stunting or low birth weight (LBW). HI, ID, speech and language disorders, Epi, and LDs were the common NDDs across sites. Upon risk modelling, noninstitutional delivery, history of perinatal asphyxia, neonatal illness, postnatal neurological/brain infections, stunting, LBW/prematurity, and older age category (6-9 year) were significantly associated with NDDs. The study sample was underrepresentative of stunting and LBW and had a 15.6% refusal. These factors could be contributing to underestimation of the true NDD burden in our population. CONCLUSIONS: The study identifies NDDs in children aged 2-9 years as a significant public health burden for India. HI was higher than and ASD prevalence comparable to the published global literature. Most risk factors of NDDs were modifiable and amenable to public health interventions

    Cyclic di-GMP sensing histidine kinase PdtaS controls mycobacterial adaptation to carbon sources

    No full text
    Cell signaling relies on second messengers to transduce signals from the sensory apparatus to downstream signaling pathway components. In bacteria, one of the most important and ubiquitous second messenger is the small molecule cyclic diguanosine monophosphate (c-di-GMP). While the biosynthesis, degradation, and regulatory pathways controlled by c-di-GMP are well characterized, the mechanisms through which c-di-GMP controls these processes are not entirely understood. Herein we present the report of a c-di-GMP sensing sensor histidine kinase PdtaS (Rv3220c), which binds to c-di-GMP at submicromolar concentrations, subsequently perturbing signaling of the PdtaS-PdtaR (Rv1626) two-component system. Aided by biochemical analysis, genetics, molecular docking, FRET microscopy, and structural modelling, we have characterized the binding of c-di-GMP in the GAF domain of PdtaS. We show that a pdtaS knockout in Mycobacterium smegmatis is severely compromised in growth on amino acid deficient media and exhibits global transcriptional dysregulation. The perturbation of the c-di-GMP-PdtaS-PdtaR axis results in a cascade of cellular changes recorded by a multiparametric systems' approach of transcriptomics, unbiased metabolomics, and lipid analyses.</p

    Prioritization of Physio-Biochemical Selection Indices and Yield-Attributing Traits toward the Acquisition of Drought Tolerance in Chickpea (<i>Cicer arietinum</i> L.)

    No full text
    Chickpea is widely grown in rainfed areas of developing countries because of its nutritional abundance and adaptability. To overcome the environmental effect of drought on yield, a characteristic-linked selection strategy is proved as well-thought-out and advantageous for the development of drought-tolerant cultivars. To precisely understand the contribution of various physio-biochemical and yield-attributing traits toward drought tolerance in chickpea (Cicer arietinum L.), forty chickpea genotypes were evaluated in the years 2020–2021 and 2021–2022 under normal irrigated as well as drought-stressed conditions. Among the studied genotypes, genotype ICC4958 retained the highest chl content (0.55 mg g−1 FW), minimal electrolyte leakage, and superoxide dismutase (1.48 U/mg FW) and peroxidase (2.21 µmol/min/g FW) activities while cultivar JG11 maintained the maximum relative water content and proline accumulation. The principal-component-based biplots prioritized the physio-biochemical and yield-accrediting characteristics based on their association significance and contribution to terminal drought tolerance. Under drought stress, grain yield per plant was depicted to have a strongly positive association with canopy temperature depression, catalase, superoxide dismutase, and peroxidase activities as well as total soluble sugar, proline, and chlorophyll content, along with the numbers of pods and biological yield per plant. These identified physio-biochemical and yield-attributing traits can be further deployed to select drought-tolerant chickpea genotypes for the breeding of climate-smart chickpea genotypes

    Synthesis of Biomass-Derived Activated Carbons and Their Immobilization on Alginate Gels for the Simultaneous Removal of Cr(VI), Cd(II), Pb(II), As(III), and Hg(II) from Water

    No full text
    Low-cost alginate gels of activated carbons were prepared, which were derived from the peels of banana and sweet lime. The synthesized carbon was activated and immobilized on alginate, producing its gel. These gels were categorized according to their methods of drying, in which air drying, freeze drying, and supercritical drying led to the formation of xerogels, cryogels, and aerogels, respectively. The gels were used for adsorption of heavy metals from their aqueous solution. The heavy metals that were targeted for removal were Pb(II), Cd(II), Cr(VI), As(III), and Hg(II). Among all the adsorbents, the alginate cryogel of sweet lime-derived activated carbon (SLACC) showed the highest removal percentage of heavy metals, and thus, it was used for batch study. The adsorption of heavy metals by SLACC was checked at different times, pH values, adsorbent doses, temperatures, and adsorbate concentrations. The study revealed that the pseudo-second-order model best described the kinetic study, while the adsorption followed the Freundlich isotherm. SLACC showed maximum adsorption capacities (qcal) of 3.71, 4.22, 20.04, 7.31, and 4.37 mg/g for Cr, Cd, Pb, As, and Hg, respectively, when 20 mg of SLACC was used for the removal of 4 ppm concentration of the targeted heavy metals from their 20 mL solution. Based on the thermodynamic study, it was found that the adsorption was spontaneous and exothermic. Furthermore, the adsorbent was also used on real water samples and showed up to 90% removal efficiency for these targeted heavy metals. SLACC was regenerated with 0.1 M ethylenediaminetetraacetic acid (EDTA) solution and reused for five cycles, in which the percentage removal of heavy metals was more than 50% till the fourth cycle. Furthermore, the leaching study showed that no toxic elements had leached from SLACC into water, making it a safe adsorbent

    Analysis of Genetic Diversity, Population Structure and Association Mapping for Late Blight Resistance in Potato (<i>Solanum tuberosum</i> L.) Accessions Using SSR Markers

    No full text
    The allelic variations in a diversity panel of 353 potato accessions, including 256 accessions belonging to Solanum tuberosum sub spp. tuberosum, 49 accessions belonging to Solanum tuberosum sub spp. andigena, and 48 Indian potato varieties were analysed using 25 simple sequence repeat (SSR) markers. The SSR allelic profiles revealed high levels of polymorphism and distinctness among the accessions studied. A total of 343 alleles of 25 SSR markers were observed in the diversity panel of 353 highly diverse tetraploid potato accessions. The number of alleles produced per SSR varied from 8 for the marker STM1053 to 25 for the marker STIKA. The polymorphic information content (PIC) ranged from 0.66 (STG0010) to 0.93 (STM1106) with an average of 0.82. The cluster analysis using the SSR allelic profiles of 353 accessions divided the population into five major groups. The association mapping for late blight resistance identified six markers with the general linear model (GLM), and out of these six markers significance of three markers was reconfirmed with the mixed linear model (MLM). The findings of this study suggest that SSRs are the appropriate markers for evaluating genetic diversity and population structure within different potato germplasm collections. A significant diversity across the tetraploid potato accessions was observed. Moreover, the markers identified in this study could be useful in marker-assisted selection (MAS) breeding in potato for late blight resistance (LBR)

    Resistance Evaluation for Native Potato Accessions against Late Blight Disease and Potato Cyst Nematodes by Molecular Markers and Phenotypic Screening in India

    No full text
    The potato originated in southern Peru and north-western Bolivia (South America). However, native accessions have also been cultivated in India for many years. Late blight, caused by the fungus Phytophthora infestans, is the most devastating potato disease, while potato cyst nematode (Globodera spp.) (PCN) is another economically significant quarantine-requiring pest in India. In this study, we have generated a new Indian native collection of 94 potato accessions collected from different parts India. These accessions were screened against late blight and potato cyst nematode resistance by using gene-based molecular markers and phenotypic screening methods. Marker assisted selection using R1 gene-specific marker CosA210 revealed a late blight resistance gene in 11 accessions. PCN resistance bands were found in 3 accessions with marker TG689141, 5 accessions with marker 57R452, and 1 accession having Gro1-4-1602 marker for G. rostochiensis (Ro1,4), while 64 accessions amplified marker HC276 indicating G. pallida (Pa2,3) resistance gene (GpaVvrn QTL). On the other hand, phenotypic screening against late blight resistance under natural epiphytic conditions (hot-spot) revealed three accessions with high resistance, while others were resistant (1 accession), moderately resistant (5 accessions), susceptible (29 accessions), and highly susceptible (56 accessions). For G. rostochiensis (golden cyst nematode) and G. pallida (white cyst nematode) resistance, accessions were grouped into highly resistant (3, 3), resistant (0, 2), moderately resistant (6, 29), susceptible (32, 30), and highly susceptible (53, 30), respectively, for the two PCN species. Collectively, we identified promising accessions with high resistance to late blight (JG-1, Kanpuria Safed, and Rangpuria), and also highly resistant to both Globodera species (Garlentic, Jeevan Jyoti, and JG-1). Our findings suggested that these accessions would be useful for late blight and PCN resistance breeding, as well as future molecular studies in potatoes

    Table_1_Root system architecture for abiotic stress tolerance in potato: Lessons from plants.DOCX

    No full text
    The root is an important plant organ, which uptakes nutrients and water from the soil, and provides anchorage for the plant. Abiotic stresses like heat, drought, nutrients, salinity, and cold are the major problems of potato cultivation. Substantial research advances have been achieved in cereals and model plants on root system architecture (RSA), and so root ideotype (e.g., maize) have been developed for efficient nutrient capture to enhance nutrient use efficiency along with genes regulating root architecture in plants. However, limited work is available on potatoes, with a few illustrations on root morphology in drought and nitrogen stress. The role of root architecture in potatoes has been investigated to some extent under heat, drought, and nitrogen stresses. Hence, this mini-review aims to update knowledge and prospects of strengthening RSA research by applying multi-disciplinary physiological, biochemical, and molecular approaches to abiotic stress tolerance to potatoes with lessons learned from model plants, cereals, and other plants.</p
    corecore